
ASPE Student Challenge - Error Report

Kushaal Singh

Nanoscale Design and Manufacturing Lab, UT Austin

Introduction

For the American Society of Precision Engineers Student Challenge we were
tasked with implementing a low-velocity position feedback control system for a
flexure stage for cutting a record. A crucial part of optimizing this system is
creating an error budget and characterizing the system itself. Only once the
system has been described may optimization occur as it defines the goal to
which we are optimizing. This report serves to explain how we went about this
process.

Positional Error

One of our initial methodologies was to create a static, positional error budget.
In other words, given a target position, how far by a distance metric is our actual
position away. When using this early methodology we quantified the distance
as a ± offset that each source would contribute then used Root Sum of Squares
(RSS) to estimate the total error. We were able to create a physical system very
quickly, which allowed for data driven calculation. Assume the following values
are true:

Table 1: Positional Error Budget

Error Source Magnitude µm Type
Control Tracking Error ±10.0 Systematic
Sensor Calibration Error ±2.0 Systematic
Mechanical Deflection ±3.0 Systematic
Electronic Noise ±1.0 Random

RSS Total Error ±10.6 µm
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Joint Time-Frequency Analysis

Motivation

Our goal, fundamentally, is to inscribe waves into a physical medium which re-
veals a few errors with the positional error methodology described above. For
example, a constant error offset that might be alarming to the positional system
will have no effect on the audio signal. To illustrate this, let us consider a simple
example where we seek to inscribe a pure sinusoid. If our target mean is set to
be some value, but our system’s mean is offset while everything else lines up,
the positional description would describe this as problematic while our audio
would be exactly correct. As such, we should evaluate dependent on frequency,
amplitude, and phase, i.e. the qualities of a wave.

Upon hearing this, an initial reaction might be to use Fourier Analysis. While
this is a good instinct, it illuminates another problem that is shared with the
positional description, that being time. Using the same example as before, if
our signal has a constant delay, which would be described as a constant phase
shift or as a sinusoidal positional error, our audio will yet again be fine, while
both a positional and a wave description would be calling this problematic. This
is an important point, as the judge’s feedback to our preliminary presentation
inquired about a phase error. The answer isn’t as simple as there ought not
to be, but rather that a phase error in addition to a frequency and positional
description of error still fails to adequately describe our system.

Additionally, Fourier Analysis implicitly assumes the signal to be Wide Sense
Stationary. This is an assumption that is very flawed when looking at a song.
A Fourier transform simply describes the frequency content present within a
signal. As such, a signal with changing frequency content, like a song which
changes pitch, is not properly described. As seen in the figure below, two dif-
ferent, non-stationary signals may produce the same Fourier transform. This is
because a Fourier transform is only bijective on the domain of stationary signals.
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Implementation

As a result of these factors, we made use of joint time-frequency analysis as
Cohen [4]. Time-frequency analysis can be done through bilinear distributions,
generalized as Cohen’s class, or as signal decomposition. We restrict our study to
Cohen’s class of distributions, as they provide a continuous joint representation
of time and frequency without requiring explicit basis functions or iterative
transforms. Cohen’s general class can be expressed as such:

C(t, ω) =
1

4π2

∫∫∫
s∗(u− 1

2
τ) s(u+

1

2
τ) ϕ(θ, τ) e−jθt−jτω+jτudθdτdu

From this, through selection of a kernel ϕ(θ, τ) we can construct the Spec-
trogram, Wigner Distribution, and Garbor Transform, among others. Careful
consideration of the kernel is warranted. In Pielemeier et al. it is noted that win-
dowing methods rely heavily on steady-state assumptions to define frequency,
which are flawed assumptions in a musical context. The instantaneous energy
of the Wigner and Modal Distributions are presented as more faithful represen-
tations of muscial signals at computational cost [3]. The Garbor Distribution,
while a windowing method, is shown to capture the essential time-frequency
information of music signals at little computational cost, and as such, most
research for musical signals surrounds Gabor frames [2]. It provides optimal
joint time–frequency resolution for linear methods, avoids the cross-term inter-
ference inherent to bilinear distributions like Wigner–Ville, and maintains the
interpretability necessary for evaluation. Note that compared to Cohen’s class,
the Gabor frame is linear, as opposed to the generalized bilinear.

To explain the Gabor Transform, first consider the Short Time Fourier Trans-
form (STFT). This works by multiplying our signal s(τ) by a window function
h(τ − t).

st(τ) = s(τ)h(τ − t)

st(τ) =

{
s(τ) for τ close to t

0 else

Thus our STFT becomes:

St(ω) =
1

2π

∫
e−jωts(τ)h(τ − t)dτ

This will create a 2d map of frequency over time. The Gabor Transform is
then STFT with a Gaussian, instead of piecewise, window function. We will
then perform this transform on both our actual and our target signals. These
2d maps will have all the necessary information we need to calculate 3 different
metrics for error, each describing a different aspect of the wave we wish to align.
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The Time-Frequency Resolution Trade-off

All joint time-frequency representations face a fundamental limitation expressed
by the Gabor Uncertainty Principle, a corollary to Heisenberg’s:

∆t ·∆f ≥ 1

4π

where ∆t represents time resolution and ∆f represents frequency resolution.
This means we cannot simultaneously achieve arbitrarily good resolution in
both time and frequency domains.

Different time-frequency representations make different compromises from this
limit. We specifically make use of the Constant-Q Gabor Transform (CQT). The
constant Q Gabor transform is the same as the earlier outlined Gabor trans-
form, except window size scales inversely with frequency. More specifically, this
uses logarithmically spaced frequencies with quality factor Q constant across
bands using Gabor frames (the Gaussian signal window).

The choice of Constant Q Gabor Transform is also motivated by perceptual
considerations. Human hearing exhibits approximately logarithmic frequency
resolution. The musical scale itself is logarithmic, as each octave represents
a doubling of frequency. The CQT’s logarithmic frequency spacing naturally
aligns with this perceptual characteristic:

fk = fmin · 2
k−1
B

where B is the number of bins per octave. This means that frequency resolution
relative to center frequency remains constant, matching the behavior of human
auditory filters.

For musical signals, which contain harmonic structures spanning multiple oc-
taves, the CQT provides a more efficient representation than linear frequency
transforms, such as the normal Gabor transform. The variable window length:

N(k) =
fs
fk

·Q

where Q = 1
21/B−1

, ensures that lower frequencies (where finer frequency res-

olution is needed) are analyzed with longer windows, while higher frequencies
(where temporal precision is more important) use shorter windows.
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The 3-Metric Framework: A Comprehensive Ap-
proach

Error metric 1: Gain / Amplitude Error

The gain error metric addresses the question: ”Does the system reproduce the
correct amplitude at each frequency over time?” This goes beyond simple fre-
quency response measurements by capturing temporal variations in gain.
In more simple terms, this metric quantifies how accurately the system repro-
duces the amplitude of frequency components over time. A perfect system would
have a gain of 1 (0 dB) at all frequencies. If a frequency is supposed to be repre-
sented but isn’t, that would be found as the amplitude being low when it should
be high.
We analyze this per frequency bin over time, quantified on a logarithmic scale.
The logarithmic scale is chosen because human loudness perception is approxi-
mately logarithmic, and the decibel unit directly relates to perceptual loudness
differences.

G(tj , fi) = 20 · log10
(
|Sachieved(tj , fi)|
|sdesired(tj , fi)|

)
This is yet another 2d map, so to extract value from this, we find the mean
error and variance across all frequency bins in our range of interest. The final
output is a plot of µG(f) and σG(f) vs. f. An ideal system has µG(f) = 0 dB
and σG(f) = 0 dB for all f.

By computing both mean (µG[i]) and standard deviation (σG[i]) across time
for each frequency bin, we distinguish between:

• Systematic errors (µG ̸= 0): Consistent amplification or attenuation at
specific frequencies, often due to equalization or filter characteristics

• Variable errors (large σG): Time-varying gain changes, potentially indi-
cating compression, automatic gain control, or instability

Pattern Likely Cause Perceptual Impact
µG > 0 across all frequen-
cies

System gain too high Potential clipping, dis-
torted dynamics

µG < 0 across all frequen-
cies

System gain too low Reduced loudness

µG frequency-dependent Equalization issues Colored sound, unnat-
ural timbre

Large σG at all frequencies Compression or AGC Pumping effect, lost
dynamics

Large σG at specific fre-
quencies

Resonances or feed-
back

Unstable, ringing
sound
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Error Metric 2: Time Delay / Phase Distortion

Phase relationships affect waveform shape and perceptual quality. This metric
answers: ”Does the system preserve correct temporal relationships between fre-
quency components?” Here we care about the shape of time delay. As noted
earlier, a constant time delay is acceptable, so we plot time delay over frequency
then curve fit linear regression. if statistically significant non-zero slope (calcu-
lated by r2) or high residuals, we have error.

For a linear, time-invariant system, a pure time delay τ produces a linear phase
response:

ϕ(f) = −2πfτ

The derivative of phase with respect to frequency gives the group delay:

τg(f) = − 1

2π

dϕ

df

For a pure delay, group delay is constant across frequency. When group delay
varies with frequency, different frequency components arrive at different times,
causing phase distortion.

Direct phase unwrapping and delay calculation can be numerically unstable.
Let us define R as the complex CQT matrix of the Reference input signal and
A as the complex CQT matrix of the Analyzed output signal.

1. Compute instantaneous phase differences: ∆Φ[i, j] = arg(A[i, j] ·R∗[i, j])

2. Average across time to reduce noise: ∆̄Φ[i] = Et[∆Φ[i, j]]

3. Convert to time delay: τ [i] = − ∆̄Φ[i]
2πfi

4. Validate with cross-correlation for ground truth

Delay Pattern System Behavior Audio Quality Impact
Constant τ across
frequency

Pure time delay Usually inaudible (except
in multi-channel contexts)

Linear τ(f) with
small slope

Minor phase distortion Minimal impact on most
program material

Nonlinear τ(f) Significant phase distor-
tion

Smearing, comb filtering,
degraded transients

Large στ across
time

Jitter or variable latency Unstable image, fuzzy
sound
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Error Metric 3: Distortion Products / Harmonic Purity

This metric quantifies the system’s linearity by measuring how much it adds
new signal content that was not present in the original input. It answers the
fundamental question: ”To what extent does the system corrupt the signal by
introducing new spectral components?” We do this by looking for energy that
appears at frequencies not present in the input.

To ensure a fair comparison independent of overall loudness changes, the ana-
lyzed signal is first normalized to have the same total power as the reference
signal. This prevents a simple gain change from being misinterpreted as dis-
tortion. The total power of each signal is evaluated as the squared Frobenius
norm, corresponding to the L2 energy of the matrix under the uniform proba-
bility measure over its index space.

Pref = ∥R∥2F =

K∑
k=1

N∑
n=1

|R(k, n)|2, Pach = ∥A∥2F =

K∑
k=1

N∑
n=1

|A(k, n)|2

The scaling factor adjusts the analyzed signal so that ∥Anorm∥2F = ∥R∥2F . The
power-normalized version of the analyzed signal, Anorm, is then:

Anorm = A ·
√

Pref

Pach

The core of this metric is the Distortion Matrix, Dcomplex, which is defined as
the complex difference between the normalized output and the reference. This
matrix isolates all new content introduced by the system. A perfect, linear
system would result in Dcomplex = 0. The instantaneous distortion power at
each time-frequency cell is given by |Dcomplex(k, n)|2. The total distortion power
is the sum over all cells:

Dcomplex = Anorm −R

Pdist = ∥Dcomplex∥2F =

K∑
k=1

N∑
n=1

|Dcomplex(k, n)|2

Our metric, Total Harmonic Distortion (THD), is then derived from the power
of the reference and distortion matrices. THD expresses the total distortion
energy as a percentage of the total reference signal energy. A lower THDTF

value indicates a purer output. A value of 0% represents a perfect system,
while a value of 5% indicates that 5% of the output signal’s energy is unwanted
distortion.

THDTF =
∥Dcomplex∥F

∥R∥F
× 100% =

√
Pdist

Pref
× 100%
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Reading Error Metrics

General Distortion Types and Their Signatures

Additive Noise:

• Gain error: Near-zero µG but increased σG due to random fluctuations

• Delay: Minimal effect

• Distortion: Elevated THD, broadband distortion spectrum

Clipping:

• Gain error: Compression-like pattern with µG < 0 during peaks

• Delay: Minimal effect

• Distortion: High THD, distortion concentrated at signal peaks and high
frequencies
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Pure Time Delay:

• Gain error: No effect

• Delay: Constant τ across frequency

• Distortion: No effect on THD (theoretical)

Pitch Shifting:

• Gain error: Frequency-dependent patterns due to spectral misalignment

• Delay: Complex frequency-dependent phase relationships

• Distortion: Elevated THD from interpolation artifacts and spectral
smearing
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Diagnostic Summary Table

Mechanical
Error

Delay Signature Gain Error Sig-
nature

Distortion Sig-
nature

Hysteresis Frequency-
dependent τ(f)

History-dependent
µG

Odd-order har-
monics

Thermal Ef-
fects

Slow τ(t) drift µG(t) correlates
with Pavg

THD increases
with temperature

Deflection Resonant τ(f)
peaks

Resonant µG(f)
peaks

THD peaks at
mechanical reso-
nances

Calibration
Error

Constant τ offset Constant µG offset Minimal unless
saturated

Sensor Noise No coherent effect Elevated white σG Broadband noise
floor

Quick Diagnosis Flow

1. Check Delay Metrics First: High XC delay? → Start with time align-
ment

2. Examine THD:

• High THD + peak distortion → Clipping

• High THD + broadband noise → Additive noise

• High THD + spectral smearing → Pitch-shifting artifacts

3. Analyze Gain Patterns:

• Systematic µG errors → EQ/filtering issues

• Random σG spikes → Connection/interference problems

• Frequency-dependent patterns → Phase/algorithm issues

4. Verify with CQT Visualization: Confirm diagnosis with time-frequency
patterns
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Mechanical Sources of Error

It would be nice to quantify our minimum errors and their sources, but this
is a problem outside the scope of this project. Below are some error types to
consider:

Hysteresis:
The output depends on the history of the input, creating path-dependent non-
linearities.

Thermal Effects
Temperature-dependent parameter changes causing slow, time-varying system
response. Thermal expansion also changes system dynamics.

Deflection at Scribe/Contact
Nonlinear spring behavior from mechanical compliance and play in linkages.

Calibration Error
Systematic offsets from improper calibration or alignment.

Sensor Noise
Stochastic processes from mechanical-thermal interactions.

IMPORTANT Clipping due to downsampling
We had to use, day of, a lower sampling rate for our voicecoil due to memory
issues, which would cause clipping and missing some high frequencies

Due to all of this, we had a different methodology for creating our error budget:
Targets were set by taking a 4 pure-tone signal (C4–E4–G4–C5) and analyzing
error metrics on augmented versions. We tested the effects of constant delay,
clipped audio, noisy data, and tone shift. Because we can’t have a true 0 of all
metrics, we need to set targets of ”good enough”. We intentionally added set
amounts of each type of error until we found that the musical signal was so bad.

I tried finding a mathematical estimation for the minimums, but I am not
confident in these calculations and have left them out.

Delay Signature Gain Error Sig-
nature

Distortion Sig-
nature

Target Error ≤2.0 ms ±2.0 dB 50%

Error with
No control

-16.0 ms -3.95 ± 9.27 dB 144%

Error with
FF

-0.2 ms mean -2.97 ± 6.7 dB 145%
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Real data

Controls selection

We implemented a Feed Forward algorithm and improved our amplitude match-
ing, changed our phase based delay, and identified resonance using the CQGT.

In our frequency sweep, using pure sin waves at different tones going through
the arpeggio of a C Major scale, we identified a problematic frequency of C3,
which is right at resonance. Our controller struggled with commanding this
frequency, so we selected a song without this frequency. This can be thought
as a notch filter eliminating that frequency, but in reality we just restrict to a
song that doesn’t have that frequency at all.
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Final Cut Metrics

Attached is the final error window for our cut record. We were also able to
reduce distortion significantly by commanding a sine wave at resonance as a
form of noise canceling.
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